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Abstract 

 

During the current COVID-19 pandemic, there have been various efforts to forecast the 

infection cases, deaths and medical or economic indicators. Various models and methods 

have been adopted or developed for different prediction contexts and purposes. Some of 

the forecasting projects have influenced the policies in some countries. However, the 

prediction of future is uncertain by nature. No model or data can accurately represent the 

complex, dynamic and heterogenous realities of the pandemic in different countries. In this 

case, we do not aim to make perfect predictions about the future or test how accurate a 

prediction will be. Instead, to address the uncertainty of predictions in dynamic real-world 

scenarios, we explore the potentials of using predictive monitoring, or namely continually 

monitoring predictions, for not just stable predictions but also changes of predictions, to 

derive implications regarding what are happening now in the real world and also make the 

planning, behaviour and mentality now be more “future-informed”. 

 

Introduction 

 

Since the outbreak of COVID-19 in January 2020, researchers around the world have 

adopted classic or latest data science and AI techniques and applied them to the data 

available to forecast the developments, trends and key dates of transitions or ending of 

COVID-19 in different countries or regions. The noticeable efforts include the publicly 

available and continually updated forecasts by the Institute of Health Metrics and Evaluation 

(IHME) at University of Washington [1], the MRC Centre for Global Infectious Disease 

Analysis at the Imperial College London [2], the University of Texas COVID-19 Modelling 

Consortium [3], and MIT IDSS Isolate [4]. Some methods focus on forecasting deaths and 

hospitality needs [5,6,7] and infection cases and peaks [8,9,10], while others focus on the 

impact of social distancing as a key operational control measure [7,11]. 

 

Some published studies have rigorously tested the precisions of certain prediction methods 

[8,10,12] mostly based on recent data from China. However, even the most noticeable 

forecasting method from the IHME has been found with model issues and high errors with 

tested with later coming actual “future” data [5,7,12]. Researchers are learning and 

improving the methods and tools on the go to in order to make more accurate predictions 
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on COVID-19 pandemic [5,12]. Despite the limitation and uncertainty of predictions, some 

forecasting methods, tools and studies have already influenced policies or informed policy 

makers to some extents and in certain ways, despite the intrinsic uncertain nature of 

forecasting or prediction, especially in the current complex and dynamic COVID019 

pandemic environment across the global. 

 

Given the value of predictions but also the difficulty to do it well in practice, we aim to 

explore the values and potentials of predictive monitoring to deal with the uncertainty of 

predictions and make use and make sense of prediction excises for suitable good. Predictive 

monitoring means the continual monitoring of predicted likely future events, such as the 

turning and ending of the ongoing pandemic, using the latest data generated daily, more for 

the monitoring purposes to derive understanding about what are happening now than the 

accurate prediction of the future. Predictive monitoring differs from the common prediction 

practice that makes a one-shot prediction and then hope to see the prediction come true 

later. It also differs from the common monitoring practice that reports actual historical 

cases of infection, recovery and death every day. 

 

The Predictive Monitoring Experiment 

 

- Theory 

 

Here we aim to experiment predictive monitoring in the realistic context of the on-going 

COVID-19, in order to explore its potentials and develop specific guidelines and strategies 

for the right use of it. To run the experiment, the first is to choose a model and data source 

for data-driven prediction, before we can update and monitor the updated predictions with 

more and more data coming in over time. The propagation of infectious diseases often 

follows a life cycle pattern, from the outbreak to the acceleration phase, inflection point, 

deacceleration phase and eventual ending. Such a life cycle is the result of the infection 

process, property of the virus, the nature of a population and the adaptive and countering 

behaviours of agents including individuals (avoiding physical contact) and governments 

(locking down cities) in the population. However, the pandemic life cycles vary by countries, 

and different countries might be in different phases of the life cycles at a same point in time.  

 

For instance, on April 21, in Singapore, Prime Minister Hsien-Loong Lee announced the 

extension of circuit breaker to June 1 in response to the spikes of COVID-19 cases, on the 

same day when Prime Minister Giuseppe Conte announced Italy’s plan to reopen from May 

4. Ideally speaking, such decisions and planning can be rationalized by well knowing where 

our own country (together with other countries and the world as a whole) is in its own 

pandemic life cycle, when the turning point is coming if it has yet come, and when the 

pandemic will end. Adjustments may be made according to the changes in the estimations 
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and predictions on these fronts. The basis for such actionable estimation is the pandemic’s 

life cycle.  

 

- Model 

 

The pandemic life cycle pattern is expected to appear as a S-shape curve when one plots the 

accumulative count of infection cases over time or equivalently as a “bell-shape” curve of 

the daily counts over time (see examples in Figure 1). Note that the bell here is not expected 

to be symmetrical with no expectation of a normal distribution, but a long tail to the right. 

Such patterns as well as the underlying dynamics have been well studied in various domains 

including population growth, diffusion of new technologies and infectious diseases, and 

have theoretically established mathematical models, including the logistic model that 

describes a general life cycle phenomenon (such as population growth) and the SIR 

(susceptible-infected-recovered) model [13,14,15] that describes the dynamic process of the 

spread of infectious diseases.  

 

 

Figure 1. Continuous Data-Driven Estimations of COVID-19 Life Cycle, Turning and Ending Dates for 

Singapore and Italy as of April 21 versus April 28, 2020 

 

The SIR model is employed in this experiment for a few reasons. One, it is context-specific 

and models the dynamic process of inflections in a population over time. Second, it requires 
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simple data inputs that are publicly available. Third, there are open source computer codes 

available for quick adoption. Here we will not repeat the details of the SIR model in this 

paper, which can be easily found in many mathematics textbooks. Essentially, the SIR model 

incorporates two main parameters, beta and gamma, for computing three key variables 

including S (number of susceptible people), I (number of infected people) and R (number of 

people that have either recovered, died or immured from the disease). Beta is the number 

of days one is contagious and a property of the virus. Gamma is the average number of 

people infected by a previously infected person and results from not only the interaction 

patterns of people in the society (which social distancing can influence) but also the 

infection process property of the virus. 

 

- Implementation 

 

The values of these two parameters fundamentally determine the shape of an infectious 

disease’s specific life cycle curve for a population. In particular, the model (with three 

equations for S, I and R in its original form) can be reduced to one function about the total 

infection count, or equivalently the daily new infection counts. This key variable is the sum 

of the variables I and R and has publicly available data reported by official channels every 

day. Please refer to this paper [16] by Milan Batista for the model reduction. Therefore, only 

the data of the total infection account (which can be also used to derive the daily new case 

count) is required to regress the two key parameters and other constants and thus train a 

model that estimates the dynamic pandemic curve.  

 

Batista also developed open-source computer codes to implement the regression using the 

reduced function [17]. In our experiments, we applied the codes of Batisa to the COVID-19 

accumulative infection data for each country from “Our World in Data” [18] to regress the 

parameters and constants of the basic SIR model. Note that, more sophisticated versions of 

the SIR model, such as the SEIR model, have also been used to predict the turning and 

ending points of COVID-19 in China, but they require more sophisticated data inputs which 

we do not have. Regressions are run for individual countries and updated daily with the 

newest accumulative and daily infection count data becoming available daily. Not the data 

for all countries can produce statistically meaningful regression results. Only the countries 

with satisfactory goodness-of-fit between model and data as measured by R^2 greater than 

0.8 are accepted, analysed and reported. For these countries, the regressed model for each 

of them is used to estimate the full pandemic life cycle and plot the life cycle curve.  

 

Makes Sense of the Predictive Monitoring 

 

As shown in the examples in Figure 1, the initial segment of the curve is fitted with the data 

to date and the remaining segment of the curve is predicted. With the estimated full life 

cycle curve, one can easily observe which phase of the pandemic life cycle a specific country 
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is in (with actual data plotted together), when the inflection point (the peak in the bell-

shape curve) is coming (for the interests of the countries still in the accelerating phase), and 

when the pandemic will end (for the interests of all countries). The inflection point is 

specific and appears as the peak in the bell-shape curve. However, estimating the “ending 

date” is not straight-forward and may be done differently for different considerations.  

 

Most theoretically, one can define the pandemic’s end date as the day with the last 

infection case of the pandemic, and thus operationalize the estimation of the end date as 

the day with the last predicted infection at the right most end of the estimated pandemic 

life cycle curve. However, practically, estimation of the theoretical ending might not be 

useful to provide guidance for the planning of activities of governments, companies and 

individuals. One might consider an early date when predominately most predicted 

infections (indicated by the regressed pandemic life cycle curve) have been actualized and 

only a small portion of the total predicted epidemic population is left. The total predicted 

infection population size is the area under the curve. In our experiments, we have 

monitored three alternative estimates of end dates in the order of conservativeness. 

- The date to reach the last expected case; 

- The date to reach 99% of the total expected cases; 

- The date to reach 97% of the total expected cases. 

In any case, specifying an end date is arbitrary in nature. With uncertainty and flexibility in 

mind, one may simply just exploit the estimated life cycle curve, especially its right most tail 

segment, to screen and sense when the pandemic gradually vanishes to which extent.  

 

It is noteworthy that the bell-shape curve is chosen to visualize the life cycle because it 

allows easy detection of the inflection point as the peak of the curve to distinguish countries 

in acceleration and deacceleration phases. For instance, Figure 1A visually reveals on April 

21 Singapore was still in its acceleration phase, whereas Figure 1C shows Italy has passed its 

inflection point. At the time, the estimated “future” turning date for Singapore would be 

May 1. However, as shown in Figure 1B, on April 28, Singapore has already past its inflection 

point, earlier than the turning date predicted on 21 April (in Figure 1A). In contrast, from 

April 21 (Figure 1C) to April 28 (Figure 1D), the curves of Italy are slightly lifted, and the later 

predictions for Italy suggest consistently later 97%, 99% and 100% ending dates. 

 

These changes are discovered through predictive monitoring, in which we continually 

monitor the predictions, not really hoping the previous predictions to be tested true later 

when the real “future” comes, but for detecting in the changes of the predictions over time. 

From a traditional perspective, the difference between a future prediction and a previous 

one on the same variable would be considered a bad thing and a proof of failure of the 

prediction model. However, here we tend to make sense of such changes from the earlier to 

later predictions for the signals as to what are happening in the dynamically changing real-
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world scenarios, with the assumptions that predictions made over time should be different 

when the real-world scenarios are changing.  

 

In other words, our default expectation in predictive monitoring is that predictions will 

change, especially when the real-world scenarios, such as government policies and human 

behaviours, are also rapidly changing. In such cases, we should not expect the model trained 

with data as of today to be true for a different scenario later. When considering the 

dynamics of human behaviours and government policies and other real-world scenarios that 

the mathematical model and training data cannot accurate represent, predictive monitoring 

would be a more valuable exercise, than making a prediction now to it is a hit or miss in 

future. Therefore, the changes in the predicted theoretical events (such as ending) may 

indicate the uncertainty in the environment. So, we also report the standard deviations in N 

latest and connectively predicted theoretical end dates as an indicator of uncertainty. If the 

standard deviation of the connective predicted ending dates is small (regardless of their 

accuracy), it indicates the real-world scenarios are not changing. If it is high, it might imply 

changes are happening in the real-world scenarios. 

 

For example, the changed predictions of the theoretical pandemic end dates of Singapore 

over time may reveal the effects of the recently strengthened measures of the Singapore 

government and more cautions of the local citizen from PM Lee’s announcement of circuit 

breaker extension on 21 April. The changed predictions of pandemic end dates for Italy may 

result from the slightly relaxed government control measures and human behaviours in Italy 

in the past week. The pandemic curves of Singapore and Italy have shifted over time, as the 

real-world scenarios have dynamically changed. It would be wrong to expect the curve 

estimated with data from the previous scenario to represent the curve for a later scenario. 

Instead, the curves should be continually re-estimated with the latest data, the predictions 

based on these curves should be continually monitored, and the changes in the predictions 

may indicate changes in real-world scenario changes over time. Monitoring and detecting 

such changes in the predictions provides the main value of predictive monitoring.  

 

In sum, these examples here suggest the importance of predictive monitoring or continually 

monitoring predictions to address uncertainty, detect and evaluate changes (such as human 

behavers and government control measures) made in the dynamic real-world scenarios in 

real time. It also allows the estimation of the uncertainty or stability of the predictions 

themselves as a result of the underlying real-world scenarios. Predictive monitoring differs 

from making a one-shot prediction for it to become true in the future and differs from the 

monitoring of actual cases every day.  

 

Caution 
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Predictive monitoring for each country should be read together with what are happening in 

the real world and government policy changes. For instance, Singapore government’s 

strengthened restrictions in April may have bended its curve earlier than the previously 

predicted ones, and the early relaxation of social distancing and lockdown in Italy and 

Germany might increase infection rates and thus delay the pandemic ending as predicted 

now. Also, the predictive monitoring of a country should not be read in isolation, but 

together with the predictions and real time situations of other countries. No country is in 

isolation in the world today. The monitoring and control of one country must be coupled 

with the monitoring and control of other countries.  

 

For example, while the predictive monitoring shows the pandemic has “theoretically” ended 

in China, South Korea and Australia (despite a small number of domestic cases reported 

daily), it also shows the world will still suffer till the end of 2020 if we remain in our present 

trajectories of government policies and individual behaviours and without medical cures and 

vaccines for COVID-19. Therefore, the governments of China, South Korea and Australia may 

not want to open their international ports so soon and lift the domestic restrictions so 

quickly, until the pandemic nears its end in the world as whole. Although it is the time for all 

of us to isolate and distance physically from each other, it is also the time that needs more 

sharing of data, information and knowledge and more close coordination. 

 

Because of the complex, dynamic and heterogenous realities in different countries, the 

curve, inflection and end dates must be continuously re-estimated with the newest data 

from official channels every day. That is, the predictions themselves are also needed to be 

monitored over time, in addition to monitoring the actual cases [19]. Especially, for 

countries that are still early in their own pandemic life cycles, the prediction of the rest of 

the curve, inflection point and ending dates will be more teasing, but also inherent less 

relevant to the “real future” to come given that the actual data only cover a smaller and 

early portion of the total life cycle and many real-world scenarios that the model cannot 

describe are expected to change. By contrast, for countries that have passed their inflection 

points and been approaching ending phases, prediction is expected to be more accurate 

because it is based on data covering more different phases of the life cycle, but also less 

useful when uncertainty is low. When uncertainty is low, it is more likely that we can derive 

and approve a highly predictive model. However, in such cases, the trained model is more 

about explaining the history and less about predicting the future. For those countries, a new 

epidemic wave might come if the governments and individuals lift controls and disciplines 

too early, especially when the pandemic is still prevalent in other countries. 

 

Summary 

 

Data-driven predictive monitoring may completement the traditional historical case 

monitoring practice and the traditional accuracy-expected prediction practices to deliver 
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additional insights. The value of continuous predictive monitoring might be greater when 

the real-world scenarios that the models cannot describe are inherently dynamic and more 

uncertain. We will continually monitor the estimated pandemic life cycle curves and end 

dates and explore valuable insights from the monitored prediction changes, as an 

experiment to explore the potentials of as well as develop guidelines and strategies for 

valuable predictive monitoring practices.  

 

In the meantime, readers must take any prediction, regardless of the model and data, with 

caution. Over-optimism based on some predicted end dates is dangerous because it may 

loosen our disciplines and controls and cause the turnaround of the virus and infection. 

Although prediction based on science and data is aimed to be objective, it is uncertain by 

nature. One thing that is certain is that the model, data and prediction are inaccurate and 

insufficient to fully represent the complex, evolving, and heterogeneous realities of our 

world. The model we use in the experiment is only theoretically suitable for one stage or 

wave of the epidemic evolution, and relatively more meaningful when applied to data for 

each single stage if the country has experienced multiple stages (such as Singapore). The 

prediction is also conditioned by the quality of the data. The data publicly available today is 

based on tests, which are done differently in different countries and over time periods. They 

do not necessarily represent the total infection account which is the theoretical input of the 

model. One should expect changes in the continually monitored predictions, instead of fixed 

expectations.  

 

Future is always uncertain. We must keep this in mind when doing and reading any 

prediction. No one predicted the COVID-19 outbreak beforehand. With acknowledging the 

uncertain nature of the ongoing COVID-19 pandemic and our growing inter-connected and 

complex world, what are eventually and fundamentally needed are the flexibility, 

robustness and resilience of people, organizations and governments, as well as sharing and 

coordination, to deal with unpredictable and unwanted future events. 
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